The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system.
نویسندگان
چکیده
In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is required to maintain behavioral rhythms under constant conditions. To understand how PDF exerts its influence, we performed time-series immunostainings for the PERIOD protein in normal and pdf mutant flies over 9 d of constant conditions. Without pdf, pacemaker neurons that normally express PDF maintained two markers of rhythms: that of PERIOD nuclear translocation and its protein staining intensity. As a group, however, they displayed a gradual dispersion in their phasing of nuclear translocation. A separate group of non-PDF circadian pacemakers also maintained PERIOD nuclear translocation rhythms without pdf but exhibited altered phase and amplitude of PERIOD staining intensity. Therefore, pdf is not required to maintain circadian protein oscillations under constant conditions; however, it is required to coordinate the phase and amplitude of such rhythms among the diverse pacemakers. These observations begin to outline the hierarchy of circadian pacemaker circuitry in the Drosophila brain.
منابع مشابه
Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae.
Pigment-dispersing factor-immunoreactive circadian pacemaker cells, which arborize in the accessory medulla, control circadian locomotor activity rhythms in Drosophila as well as in the cockroach Leucophaea maderae via unknown mechanisms. Here, we show that circadian pacemaker candidates of the accessory medulla of the cockroach produce regular interspike intervals. Therefore, the membrane pote...
متن کاملFluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock
Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-tran...
متن کاملDrosophila olfactory response rhythms require clock genes but not pigment dispersing factor or lateral neurons.
Odors elicit a number of behavioral responses, including attraction and repulsion in Drosophila. In this study, the authors used a T-maze apparatus to show that wild-type Drosophila melanogaster exhibit a robust circadian rhythm in the olfactory attractive and repulsive responses. These responses were lower during the day and began to rise at early night, peaking at about the middle of the nigh...
متن کاملPigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila
Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigme...
متن کاملPDF cycling in the dorsal protocerebrum of the Drosophila brain is not necessary for circadian clock function.
In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is a likely circadian molecule, secreted by central pacemaker neurons (LNvs). PDF is expressed in both small and large LNvs (sLNvs and lLNvs), and there are striking circadian oscillations of PDF staining intensity in the small cell termini, which require a functional molecular clock. This cycling may be relevant to the proposed ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 36 شماره
صفحات -
تاریخ انتشار 2004